# **CURRICULUM**

Bachelor of Automotive
Engineering
Education (BAEE) Study
Program

Faculty of Engineering Universitas Negeri Yogyakarta 2023





## **Contents**

| A. | Objective                         | 3  |
|----|-----------------------------------|----|
| B. | Programme Learning Outcomes (PLO) | 4  |
| C. | Qualification Profile             | 6  |
| D. | The Title of The Degree Program   | 7  |
| E. | Curriculum Structure              | 7  |
| F. | Assessment                        | 11 |
| G  | Grading and Scoring               | 12 |

## BACHELOR OF AUTOMOTIVE ENGINEERING EDUCATION FACULTY OF ENGINEERING UNIVERSITAS NEGERI YOGYAKARTA

## A. Objective

The vision of the Automotive Engineering Education Study Program (BAEE) is "to become a superior, creative and continuously innovative study program in the study of science and the application of automotive technology engineering including design, modeling, manufacture, and analysis based on piety, independence, and intelligence" The vision is translated into five missions as follows:

- Organizing academic education and professional education in automotive engineering to facilitate the development of students into graduates who uphold piety, autonomy, and intellect.
- 2) Carrying out basic and applied research in automotive engineering education.
- 3) Carrying out community service and community empowerment to encourage the development of social and natural potentials to realize people's welfare.
- 4) Realization of transparent and accountable study program governance.
- 5) Build resources and strengthen partnerships to achieve the vision.

Based on the vision and mission of the study program, four Program Educational Objectives (PEO) were formulated from the Bachelor of Automotive Engineering Education (BAEE) as follows:

- 1) Graduates have personality, social and professional ethics in accordance with the times.
- 2) Graduates are able to demonstrate mastery of automotive science and technology, namely designing, modeling, manufacturing, and analysis based on scientific studies.
- 3) Graduates are able to implement learning in accordance with the needs and developments in automotive technology;
- 4) Graduates are able to develop themselves creatively, innovatively, collaboratively, and communicatively by applying vocational knowledge and automotive engineering to the business world and other fields.

## **B. Programme Learning Outcomes (PLO)**

There are 8 Learning Outcomes programs covering aspects of attitude, knowledge, and skills as follows:

- 1. Demonstrate attitudes based on religious values, nationalism, academic ethics, and professional ethics.
- 2. Apply basic science and mathematics knowledge in systematically developing automotive technology.
- 3. Analyze the development of automotive engineering education based on scientific methods and facts.
- 4. Planning automotive engineering lessons in accordance with the characteristics of students, the needs of the world of work, and the latest technology.
- 5. Conduct research and assessment of automotive engineering education to find a solution in the form of a scientific paper.
- 6. Carry out automotive engineering learning with approaches, strategies, methods, techniques, tactics, and learning models in accordance with the latest technology.
- 7. Demonstrate critical thinking, creative, innovative, communicative, adaptive, collaborative, and leadership skills.
- 8. Able to demonstrate independent, quality, and professionally measurable work in the automotive field.

The PLO's formulation for the BAEE SP refers to the qualification levels of the Indonesian Qualifications Framework (IQF). The IQF is a framework for ranking the qualifications of Indonesian human resources that juxtapose, equalize, and integrate the education sector with the training and work experience sectors in a workability recognition scheme tailored to the structures in various work sectors. IQF has nine groupings of qualification levels. Undergraduate graduates are equivalent to level 6.

The BAEE Study Program has 8 PLOs which are equivalent to 6 Subject Specific Criteria (SSC)-01 standards, including Knowledge and Understanding (KU), Engineering Analysis (EA), Engineering Design (ED), Investigations and Assessment (IA), Engineering Practice (EP), and Transferable Skills (TS). Mapping between PLOs of BAEE and ASIIN SSC-01 is described in following table.

Table 1 Relationship Between SSC and PLO

|     | SSC                                                                                                                                   |      |          |  | PLO |   |   |   |   |  |  |  |  |  |  |
|-----|---------------------------------------------------------------------------------------------------------------------------------------|------|----------|--|-----|---|---|---|---|--|--|--|--|--|--|
|     |                                                                                                                                       |      |          |  | 4   | 5 | 6 | 7 | 8 |  |  |  |  |  |  |
|     | Knowledge and understandin                                                                                                            | g (k | (U)      |  |     |   |   |   |   |  |  |  |  |  |  |
| KU1 | Gained extensive technical knowledge as to engineering, mathematics and natural science with a view to mechanical engineering/process |      | <b>√</b> |  |     |   |   |   |   |  |  |  |  |  |  |

|                           | engineering/ chemical engineering, enabling them                                               |                |              |          |          |          |          |  |          |  |
|---------------------------|------------------------------------------------------------------------------------------------|----------------|--------------|----------|----------|----------|----------|--|----------|--|
|                           | to carry out scientifically substantiated work and                                             |                |              |          |          |          |          |  |          |  |
|                           | act responsibly in their professional activities;                                              |                |              |          |          |          |          |  |          |  |
| KU2                       | Gained an understanding of the multi-disciplinary                                              |                | $\checkmark$ |          |          |          |          |  |          |  |
|                           | context of Engineering Sciences.                                                               |                |              |          |          |          |          |  |          |  |
| Engineering Analysis (EA) |                                                                                                |                |              |          |          |          |          |  |          |  |
| EA1                       | Identify, formulate and solve problems peculiar to                                             |                |              | <b>√</b> |          |          |          |  |          |  |
|                           | mechanical engineering / process engineering /                                                 |                |              |          |          |          |          |  |          |  |
|                           | chemical engineering based on the application of                                               |                |              |          |          |          |          |  |          |  |
|                           | established scientific methods;                                                                |                |              |          |          |          |          |  |          |  |
| EA2                       | analyse and assess products, processes and                                                     |                |              | ✓        |          |          |          |  |          |  |
|                           | methods used in their discipline based on scientific                                           |                |              |          |          |          |          |  |          |  |
|                           | facts;                                                                                         |                |              |          |          |          |          |  |          |  |
| EA3                       | choose suitable methods of analysing, modelling,                                               |                |              | <b>√</b> |          |          |          |  |          |  |
|                           | simulating and optimising and apply them with a                                                |                |              |          |          |          |          |  |          |  |
|                           | high degree of competence.                                                                     |                |              |          |          |          |          |  |          |  |
|                           | Engineering Design (ED                                                                         | ))             |              |          | I        |          |          |  |          |  |
| ED1                       | the ability to conceive designs for machinery,                                                 |                |              |          | <b>√</b> |          |          |  |          |  |
|                           | devices, EDP programmes or processes                                                           |                |              |          |          |          |          |  |          |  |
|                           | correspondent to the status of their knowledge and                                             |                |              |          |          |          |          |  |          |  |
|                           | to develop them according to specified                                                         |                |              |          |          |          |          |  |          |  |
|                           | requirements;                                                                                  |                |              |          |          |          |          |  |          |  |
| ED2                       | practically orientated understanding of design                                                 |                |              |          | <b>√</b> | <b>√</b> | <b>√</b> |  |          |  |
|                           | methods and the ability to apply them in a                                                     |                |              |          |          |          |          |  |          |  |
|                           | competent manner.                                                                              |                |              |          |          |          |          |  |          |  |
|                           | Investigations and Assessme                                                                    | ent (l         | Δ)           |          |          |          |          |  |          |  |
| IA1                       | carry out literature research in accordance with the                                           | /// <b>(</b> - | . ·,         |          |          | <b>√</b> |          |  |          |  |
| 17 ( )                    | status of their knowledge and understanding and                                                |                |              |          |          |          |          |  |          |  |
|                           | to use data bases and other sources of information                                             |                |              |          |          |          |          |  |          |  |
|                           | for their work;                                                                                |                |              |          |          |          |          |  |          |  |
| IA2                       | plan and carry out suitable experiments                                                        |                |              |          |          | <b>√</b> |          |  |          |  |
| 1/1/2                     | correspondent to the status of their knowledge and                                             |                |              |          |          |          |          |  |          |  |
|                           | understanding, to interpret the data and draw                                                  |                |              |          |          |          |          |  |          |  |
|                           | suitable conclusions.                                                                          |                |              |          |          |          |          |  |          |  |
|                           | Engineering Practice (El                                                                       | <b>)</b>       |              |          |          |          |          |  |          |  |
| ED4                       |                                                                                                | -)<br>  ./     |              |          |          |          | <b>√</b> |  | <b>√</b> |  |
| EP1                       | able to transfer new findings in engineering and natural sciences to industrial and commercial | •              |              |          |          |          | <b>'</b> |  | •        |  |
|                           |                                                                                                |                |              |          |          |          |          |  |          |  |
|                           | production under consideration of economic,                                                    |                |              |          |          |          |          |  |          |  |
|                           | ecologic and safety requirements as well as                                                    |                |              |          |          |          |          |  |          |  |
| EDO                       | sustainability and environmental compatibility                                                 |                |              |          |          |          |          |  |          |  |
| EP2                       | able to plan, control and monitor processes and to                                             | ✓              |              |          |          |          | <b>√</b> |  | <b>√</b> |  |
| ED.                       | develop and operate systems and equipment;                                                     |                |              |          |          |          | /        |  |          |  |
| EP3                       | able to independently consolidate the knowledge                                                | ✓              |              |          |          |          | <b>√</b> |  | ✓        |  |
|                           | gained;                                                                                        |                |              |          |          |          |          |  |          |  |
| EP4                       | aware of the non-technical effects of engineering                                              | ✓              |              |          |          |          | <b>√</b> |  | ✓        |  |
|                           | activities.                                                                                    |                |              |          |          |          |          |  |          |  |
|                           |                                                                                                |                |              |          |          |          |          |  |          |  |
|                           |                                                                                                |                |              |          |          |          |          |  |          |  |

|     | Transferable Skills (TS)                                                                                                                                                                                                                                                       |          |  |  |          |          |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--|--|----------|----------|
| TS1 | function effectively as an individual and as a member of a team, including where relevant coordination of the team;                                                                                                                                                            |          |  |  | <b>√</b> | ✓        |
| TS2 | use diverse methods to communicate effectively with the engineering community and with society at large;                                                                                                                                                                       | <b>√</b> |  |  | <b>√</b> | <b>√</b> |
| TS3 | demonstrate awareness of the health, safety and legal issues and responsibilities of engineering practice, the impact of engineering solutions in a societal and environmental context, and commit to professional ethics, responsibilities and norms of engineering practice; | <b>√</b> |  |  | <b>√</b> | <b>✓</b> |
| TS4 | demonstrate an awareness of project<br>management and business practices, such as risk<br>and change management, and understand their<br>limitations;                                                                                                                          |          |  |  | ✓        | <b>√</b> |
| TS5 | recognise the need for, and have the ability to engage in independent, life-long learning;                                                                                                                                                                                     |          |  |  | <b>√</b> | <b>√</b> |
| TS6 | work and communicate in national and international contexts                                                                                                                                                                                                                    |          |  |  | ✓        | <b>√</b> |

#### C. Qualification Profile

Based on the vision and missions of BAEE, there are three groups of the occupational profile of BAEE graduates. The expected scope of occupational competencies can be explained as follows:

- 1. Teacher at a Vocational High School in the field of Automotive Engineering
- 2. Training Instructors at Automotive Vocational Education Institutions or Education and Training centers in the Automotive Industry.
- 3. **Technopreneur** in the automotive sector or business manager in the automotive sector.

Relation between Occupational Profile with PLO of BAEE Graduates ditampilkan pada table berikut.

**Table 2 Relational Occupation Profile with PLO** 

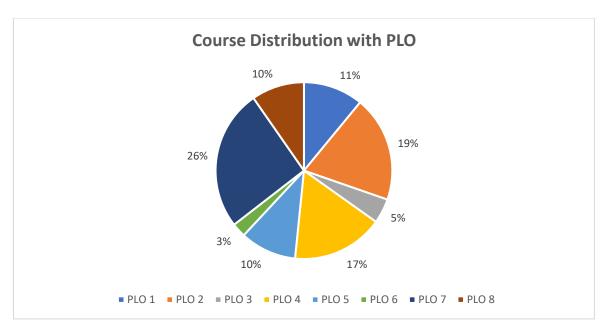
| Occupation           | Program Learning Outcomes (PLO) |      |      |      |      |      |      |      |  |  |
|----------------------|---------------------------------|------|------|------|------|------|------|------|--|--|
| Profile              | PLO1                            | PLO2 | PLO3 | PLO4 | PLO5 | PLO6 | PLO7 | PLO8 |  |  |
| Teacher              | ✓                               | ✓    | ✓    | ✓    | ✓    | ✓    | ✓    | ✓    |  |  |
| Training Instructors | ✓                               | ✓    | ✓    | ✓    | ✓    | ✓    | ✓    | ✓    |  |  |
| Technopreneur        | ✓                               | ✓    |      |      |      |      | ✓    | ✓    |  |  |

### D. The Title of The Degree Program

The name of this study program is Bachelor of Automotive Engineering Education (BAEE) based on the Decree of the Minister of Education and Culture of the Republic of Indonesia c.g. Director General of Higher Education Number 0554/0/1983 dated 3 November 1983 (Appendix 1.1). The name is adapted to the undergraduate program nomenclature issued by the Indonesian Ministry of Education and Culture (Kemendikbud) which has been socialized to all tertiary institutions and the world of work in Indonesia. Therefore, there has never been an understanding regarding the name and field of competence of this program experienced by graduates and stakeholders. The Automotive Engineering Education Study Program has a Bachelor of Education degree (B.Ed. Automotive SP.). The bachelor of education degree is intended to proceed to a professional program to obtain the title of teacher profession. One of the requirements for a professional teacher degree is a Bachelor of Education degree, following a linear professional education program. In accordance with the naming program study, the language of instruction given during the learning process is mainly Indonesian. In addition, some courses are delivered in English. Currently, the Automotive Engineering Education Study Program is accredited "Unggul" or Excelent based on the Decree of the National Accreditation Board for Higher Education Number 12803/SK/BAN-PT/AK-ISK/S/XII/2021 (Appendix 1.2). BAEE is designed to have the advantage of producing teachers, instructors, and technopreneurs in the field of Automotive Engineering who are oriented toward the demands of the workforce.

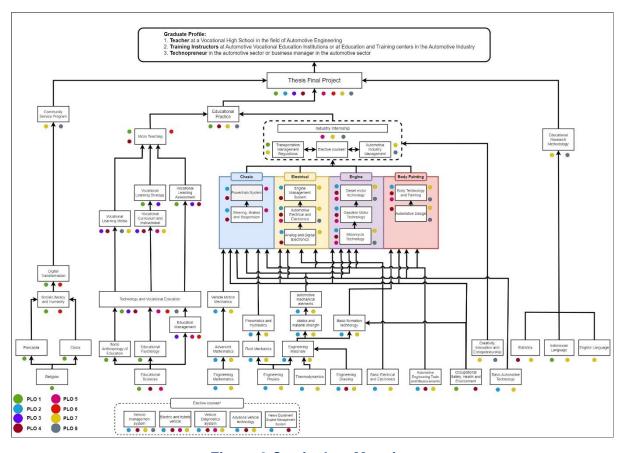
#### E. Curriculum Structure

The curriculum structure is designed and aligned with the SKKNI (Indonesian National Work Competency Standards) in the field of automotive engineering and with the PLO. Its profile is also in line with ASIIN SSC. The BAEE Study Program has 8 PLOs which are equivalent to 6 SSC-01 standards, including Knowledge and Understanding (KU), Engineering Analysis (EA), Engineering Design (ED), Investigations and Assessment (IA), Engineering Practice (EP), and Transferable Skills (TS). The relationship between courses and PLO in the curriculum structure is explained in the following table:


**Table 3 Curriculum Structure** 

| Subjec                 | Subjec Made Wallah    |        | Number of Credit Systems |          |   |   | PLO |   |   |   |   |   |  |  |  |
|------------------------|-----------------------|--------|--------------------------|----------|---|---|-----|---|---|---|---|---|--|--|--|
| Codes                  | Mata Kuliah           | Number | Theory                   | Practice | 1 | 2 | 3   | 4 | 5 | 6 | 7 | 8 |  |  |  |
| Semester 1 (22 Credit) |                       |        |                          |          |   |   |     |   |   |   |   |   |  |  |  |
| MKU6201                | Islamic Education*    |        |                          |          |   |   |     |   |   |   |   |   |  |  |  |
| MKU6202                | Catholic Education *  | 2      | 2                        |          | ✓ |   |     |   |   |   |   |   |  |  |  |
| MKU6203                | Christian Education * |        |                          |          |   |   |     |   |   |   |   |   |  |  |  |

| Subjec   |                                             | Number | of Credit   | Systems     |          |          |          | PI       | LO       |   |          |          |
|----------|---------------------------------------------|--------|-------------|-------------|----------|----------|----------|----------|----------|---|----------|----------|
| Codes    | Mata Kuliah                                 | Number | Theory      | Practice    | 1        | 2        | 3        | 4        | 5        | 6 | 7        | 8        |
| MKU6204  | Buddhist Education *                        |        |             |             |          |          |          |          |          |   |          |          |
| MKU6205  | Hindu Education *                           |        |             |             |          |          |          |          |          |   |          |          |
| MKU6206  | Konghuchu Education *                       |        |             |             |          |          |          |          |          |   |          |          |
| OTO6205  | Engineering Mathematics                     | 2      | 2           |             |          | ✓        |          |          |          |   | ✓        |          |
| OTO6206  | Engineering Physics                         | 2      | 2           |             |          | ✓        |          |          |          |   | ✓        |          |
| MDK6201  | Education                                   | 2      | 2           |             | ✓        |          |          | ✓        | ✓        |   |          |          |
| OTO 6201 | Engineering Drawing Practice                | 2      |             | 2           |          | ✓        |          | ✓        |          |   | ✓        |          |
| OTO 6302 | Automotive Technical Tools and Measurements | 3      | 2           | 1           |          | ~        |          | ~        |          |   | ~        |          |
| OTO 6303 | Basic Formation Technology                  | 3      | 1           | 2           |          | ✓        |          |          |          |   | ✓        |          |
| OTO 6404 | Electricity and Basic<br>Electronics        | 4      | 2           | 2           |          | ✓        |          |          |          |   | ✓        |          |
| MKU6216  | Social And Humanitarian<br>Literacy         | 2      | 2           |             | <b>√</b> |          |          |          |          |   | <b>✓</b> |          |
|          | Literacy                                    | Sei    | mester 2 (2 | L24 Credit) |          |          |          |          | 1        |   |          |          |
| MKU6212  | Digital Transformation                      | 2      |             | 2           | ✓        |          |          |          |          |   | ✓        |          |
| OTO6413  | Analog and Digital Electronics              | 4      | 2           | 2           |          | <b>√</b> |          | <b>√</b> |          |   | ✓        |          |
| OTO6322  | Pneumatic and Hydraulic                     | 3      | 1           | 2           |          | <b>√</b> |          |          |          |   | ✓        |          |
| OTO6208  | Advanced Mathematics                        | 2      | 2           |             |          | <b>√</b> |          |          |          |   | ✓        |          |
| OTO6310  | Materials Engineering                       | 3      | 2           | 1           |          | <b>√</b> |          |          |          |   | ✓        |          |
| OTO6432  | Motorcycle Technology                       | 4      | 2           | 2           |          | <b>√</b> |          | <b>√</b> | 1        |   | <b>√</b> | <b>√</b> |
| FTE6208  | Technology and Vocational<br>Education      | 2      | 2           |             | ✓        |          | <b>✓</b> | ✓        | <b>✓</b> | ✓ |          | ✓        |
| MKU6209  | Indonesian                                  | 2      | 2           |             | ✓        |          |          |          |          |   | ✓        |          |
| OTO6209  | Fluid Mechanics                             | 2      | 2           |             |          | ✓        |          |          |          |   | ✓        |          |
|          |                                             | Sei    | mester 3 (2 | 22 Credit)  |          |          |          |          |          |   |          |          |
| MKU6207  | Civic Education                             | 2      | 2           |             | <b>√</b> |          |          |          |          |   |          |          |
| MKU6208  | Pancasila                                   | 2      | 2           |             | <b>✓</b> |          |          |          |          |   |          |          |
| OTO6212  | Thermodynamics                              | 2      | 2           |             |          | ✓        |          |          |          |   | ✓        |          |
| OTO6221  | Statics and Material Strength               | 2      | 2           |             |          | <b>✓</b> |          |          |          |   | ✓        |          |
| OTO6420  | Steering, Brake and<br>Suspension           | 4      | 2           | 2           |          | ✓        |          | ✓        | ✓        |   |          |          |
| OTO6216  | Automotive Design                           | 2      |             | 2           |          | ✓        |          |          |          |   | ✓        | ✓        |
| MDK6202  | Educational Psychology                      | 2      | 2           |             | ✓        |          |          |          |          |   |          |          |
| OTO6411  | Gasoline Motor Technology                   | 4      | 2           | 2           |          | ✓        |          | ✓        | ✓        |   |          |          |
| OTO6418  | Electricity and Automotive<br>Electronics   | 4      | 2           | 2           |          | ✓        |          | ✓        | ✓        |   | ✓        | ✓        |
|          | T                                           | l      | mester 4 (  | 24 Credit)  |          | 1        |          | 1        |          |   | 1        | ı        |
| FTE6204  | Vocational Learning Media                   | 2      | 2           |             |          |          | ✓        | ✓        |          |   | ✓        | ✓        |
| OTO6419  | Power Transfer System                       | 4      | 2           | 2           |          | ✓        |          | ✓        | ✓        |   |          |          |
| OTO6214  | Automotive Mechanical<br>Elements           | 2      | 2           |             |          | ✓        |          |          |          |   | ✓        |          |
| FTE6203  | Vocational Learning                         | 2      | 2           |             | ✓        |          | ✓        |          |          |   |          |          |
| OTO6226  | Vehicle Movement Mechanics                  | 2      | 2           |             |          | ✓        |          |          |          |   | ✓        |          |
| FTE6202  | Vocational Education<br>Curriculum          | 2      | 2           |             |          |          | ✓        | ✓        | ✓        |   |          | ✓        |
| FTE6210  | Statistics                                  | 2      | 2           |             |          |          |          | ✓        |          |   | ✓        |          |


| Subjec                 | M. 4. 17. P. I.                                | Number | of Credit   | Systems    | PLO |    |   |    |    |   |    |    |
|------------------------|------------------------------------------------|--------|-------------|------------|-----|----|---|----|----|---|----|----|
| Codes                  | Mata Kuliah                                    | Number | Theory      | Practice   | 1   | 2  | 3 | 4  | 5  | 6 | 7  | 8  |
| OTO6424                | Body Technology and Painting                   | 4      | 2           | 2          |     | ✓  |   | ✓  | ✓  |   | ✓  | ✓  |
| OTO6417                | Diesel Motor Technology                        | 4      | 2           | 2          |     | ✓  |   | ✓  | ✓  |   | ✓  | ✓  |
| Semester 5 (23 Credit) |                                                |        |             |            |     |    |   |    |    |   |    |    |
| MKP6301                | Educational Research<br>Methodology            | 3      | 3           |            |     |    |   |    | 1  |   | ✓  |    |
| MKU6211                | English                                        | 2      | 2           |            |     |    |   |    |    |   | ✓  |    |
| MDK6204                | Socio -Educational<br>Anthropology             | 2      | 2           |            | ✓   |    |   |    |    |   |    |    |
| MDK6203                | Vocational Education<br>Management             | 2      | 2           |            |     |    | ✓ |    | ✓  |   | ✓  |    |
| PEN6201                | Micro Teaching                                 | 2      |             | 2          | ✓   |    |   | ✓  |    | ✓ |    |    |
| OTO6200                | Transportation Management Regulation           | 2      | 2           |            | ✓   |    |   |    |    |   | ✓  |    |
| FTE6207                | Safety, Occupational Health and Environment    | 2      | 2           |            | ✓   |    |   | ✓  |    |   |    |    |
| FTE6205                | Vocational Learning<br>Assessment              | 2      | 2           |            | ✓   |    | ✓ | ✓  |    |   |    |    |
| MKU6213                | Creativity, Innovation and<br>Entrepreneurship | 2      | 2           |            |     |    |   |    |    |   | ✓  | ✓  |
| OTO6423                | Engine Management System                       | 4      | 2           | 2          |     | ✓  |   | ✓  |    |   | ✓  |    |
|                        |                                                | Sei    | mester 6 (  | 12 Credit) |     |    |   |    |    |   |    |    |
| OTO6252                | Vehicle Management<br>System**                 |        |             |            |     | ✓  |   | ✓  |    |   | ✓  | ✓  |
| OTO6253                | Electric and Hybrid Vehicle**                  |        |             |            |     | ✓  |   | ✓  | ✓  |   | ✓  |    |
| OTO6254                | EMS Heavy Equipment**                          | 2      | 2           |            |     | ✓  |   | ✓  |    |   |    |    |
| OTO6255                | Advance Vehicle<br>Technology**                |        |             |            |     | ✓  |   | ✓  |    |   | ✓  |    |
| OTO6256                | Vehicle Diagnosis System**                     |        |             |            |     | ✓  |   | ✓  | ✓  |   | ✓  |    |
| OTO6227                | Automotive Industry<br>Management              | 2      | 2           |            |     |    |   |    |    |   | ✓  | ✓  |
| MKL6853                | Industrial Practice                            | 8      |             | 8          |     |    |   |    | ✓  |   | ✓  | ✓  |
|                        |                                                | Sei    | mester 7 (  | 12 Credit) |     |    |   |    |    |   |    |    |
| MKL6604                | Community Service Program                      | 6      |             | 6          |     |    |   |    |    |   | ✓  | ✓  |
| MKL6601                | Educational Practice                           | 6      |             | 6          | ✓   |    |   | ✓  |    | ✓ | ✓  | 1  |
|                        |                                                | Sei    | mester 8 (8 | 3 Credit)  | •   |    | • | •  |    | • |    |    |
| TAM6801                | Thesis Final Project                           | 8      |             |            | ✓   | ✓  | ✓ | ✓  | ✓  | ✓ | ✓  | 1  |
|                        | Total                                          | 149    | 87          | 54         | 17  | 30 | 7 | 26 | 16 | 4 | 40 | 15 |

The structure of the courses in the BAEE SP curriculum for eight semesters can be described based on their weight to the PLO, as shown in Figure 1. PLO 1 weighs 11% of the entire course. PLO 2 makes up 19% of the entire course. PLO 3 weighs 5% of the entire course. PLO 4 weighs 17% of the entire course. PLO 5 weighs 10% of the entire course. PLO 6 weighs 3% of the entire course. PLO 7 weighs 26% of the entire course. Meanwhile, PLO 8 weighs 10% of all courses. The following is a picture of the distribution of courses with PLO.



**Figure 1 Course Distribution with PLO** 

The structure of the courses in the BAEE curriculum for eight semesters can be described as underdeveloped to achieve the set graduate qualification standards. The following is an image of course mapping with Graduate Profiles.



**Figure 2 Curriculum Mapping** 

## F. Assessment

There are several type of assessment that used by BAEE SP as is shown in the following table.

**Table 4 Assessment** 

| No | Type of Assessment         | Explanation                                                      |
|----|----------------------------|------------------------------------------------------------------|
| 1  | Short Form and Multiple    | Short form tests are also known as objective tests. They         |
|    | Choice Test                | include multiple choice, completion (or close), true-false and   |
|    |                            | matching types, of which multiple choice is the most             |
|    |                            | commonly used.                                                   |
| 2  | Short Answer Test          | Short answer questions require a brief answer consisting of a    |
|    |                            | phrase, sentence or short paragraph. For example, 'briefly       |
|    |                            | explain the purpose of formative assessment'.                    |
| 3  | Essay                      | Essays require students to select, organise and integrate        |
|    |                            | material on a given topic. They also test writing skills and the |
|    |                            | ability to develop an argument and use evidence to support it.   |
| 4  | Performance Test           | Performance tests involve either a hands-on activity, such as    |
|    |                            | using a particular analytical laboratory technique or taking a   |
|    |                            | patient history, or the development of products, such as a       |
|    |                            | building design or computer software.                            |
| 5  | Written Report             | The report is a common way of presenting information and         |
|    |                            | recommendations or conclusions related to a specific             |
|    |                            | purpose. Reports are written based on gathering and              |
|    |                            | analysing information using a discipline specific methodology    |
|    |                            | and format.                                                      |
| 6  | Fieldwork / Practicum-Test | Fieldwork experiences and practicums provide opportunities       |
|    |                            | for assessments to be performed on site or subsequent to the     |
|    |                            | experience. Fieldwork practical tests may involve                |
|    |                            | performance tests in the workplace on specific cases or tasks,   |
|    |                            | or may involve the assessment of skills and abilities.           |
| 7  | Project                    | Projects are an extended piece of work involving inquiry         |
|    |                            | based activities. Projects may be small or large, undertaken     |
|    |                            | by individuals or in groups and have outcomes such as a          |
|    |                            | report, design, art work, wiki, a poster or working product.     |

## **G.** Grading and Scoring

The final score is presented in the letter grading, which the conversion is defined in UNY Academic Regulation (https://s.id/AcademicRegulation), Article 21 paragraph 4. The scoring category is detailed in the following tabel:

**Table 5 Grading and Scoring** 

| Final Mark     | Conv   | ersion |
|----------------|--------|--------|
| Scale          | Letter | Weight |
| 86 – 100       | Α      | 4.00   |
| 81 – 85        | A-     | 3.67   |
| 76 – 80        | B+     | 3.33   |
| 71 – 75        | В      | 3.00   |
| 66 – 70        | B-     | 2.67   |
| 61 – 65        | C+     | 2.33   |
| 56 <b>–</b> 60 | С      | 2.00   |
| 41 – 55        | D      | 1.00   |
| 0 – 40         | Е      | 0.00   |